2023 AIChE Annual Meeting
(27x) Computational Design of Peptides As Detectors, Drugs, and Biomaterials
Authors
First, we focus on our efforts to identify peptides that bind to SARS-CoV-2 Receptor Binding Domain (RBD) and inhibit SARS-CoV-2 cell entry. Our in-silico 23 mer peptide, P4, binds to the Wuhan-Hu-1, Kappa, and Delta strain of the SARS-CoV-2 RBD with micromolar level affinity, as measured using a tryptophan fluorescence quenching assay but cannot outcompete ACE2 in a competitive ELISA assay. Second, we describe a peptide-based drug that we designed to bind to Clostridioides difficile toxin A with the aim of neutralizing Clostridioides difficile toxicity in large intestinal cells. This 8-mer peptide, SA1, binds to the Clostridioides difficile toxin A glucosytransferase domain. The efficacy of peptide SA1 was tested using a trans-epithelial electrical resistance (TEER) assay on monolayers of the human gut epithelial culture model. Peptide SA1 blocks TcdA toxicity in jejunum (small intestine) cells and in colon epithelial cells and exhibits a binding affinity in the nanomolar ranges. Finally, we discuss the design of peptides that form amyloid-like structures. These peptides contribute to a new generation of amyloid-structure inspired peptide-based biomaterials. Overall, the combination of fundamental peptide:protein interaction and protein aggregation studies, and the rational design of proteins and short peptides opens broad opportunities in healthcare and soft-materials.