2019 AIChE Annual Meeting
(444e) Agent-Based Modeling of the Effects of Colony Size and Neonicotinoid Exposure on Bumblebee Behavior within Nests
Authors
We validated our model with our recently published empirical results before and after sublethal dosing of a common neonicotinoid called imidacloprid [10]. Additionally, we have made our agent-based model available as free open-source software called BeeNestABM [11]. The software and its documentation has been peer-reviewed [12]. We used the model to elucidate the mechanisms underlying the effects of neonicotinoid exposure on worker behavior within bumblebee nests and how these effects are modulated by colony size [13]. In this presentation, we will summarize how the agent-based model works and analyze in silico simulation results for several emergent behaviors within nests for treated and untreated bumblebees in colonies of different sizes (population and spatial dimensions). Our results suggest that changes in both number of workers and nest architecture may contribute to making larger colonies less sensitive to pesticide exposure.
References
[1] Cresswell, J. E. (2011). A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149â157. doi:10.1007/s10646-010-0566-0.
[2] Gill, R. J., Ramos-Rodriguez, O., and Raine, N. E. (2012). Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 490, 105â108. doi:10.1038/nature11585.
[3] Whitehorn, P. R., O'Connor, S., Wackers, F. L., and Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351â352. doi:10.1126/science.1215025.
[4] Feltham, H., Park, K., and Goulson, D. (2014). Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317â323. doi:10.1007/s10646-014-1189-7.
[5] Rundlöf, M., Andersson, G. K. S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., et al. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77â80. doi:10.1038/nature14420.
[6] Stanley, D. A., Garratt, M. P. D., Wickens, J. B., Wickens, V. J., Potts, S. G., and Raine, N. E. (2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548â550. doi:10.1038/nature16167.
[7] Stanley, D. A., Smith, K. E., and Raine, N. E. (2015). Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508. doi:10.1038/srep16508.
[8] Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., et al. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 7, 12459. doi:10.1038/ncomms12459.
[9] Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., et al. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393â1395. doi:10.1126/science.aaa1190.
[10] Crall, J. D., Switzer, C. M., Oppenheimer, R. L., Ford Versypt, A. N., Dey, B., Brown, A., et al. (2018b). Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683â686. doi:10.1126/science.aat1598.
[11] Ford Versypt, A. N., Crall, J. D., and Dey, B. (2018) BeeNestABM, http://github.com/ashleefv/BeeNestABM DOI: 10.5281/zenodo.1148830.
[12] Ford Versypt, A. N., Crall, J. D., and Dey, B. (2018). BeeNestABM: An open-source agent-based model of spatiotemporal distribution of bumblebees in nests. JOSS 3, 718. doi:10.21105/joss.00718.
[13] Crall, J. D., de Bivort, B. L., Dey, B., Ford Versypt, A. N. (2019) Social buffering of pesticides in bumblebees: agent-based modeling of the effects of colony size and neonicotinoid exposure on behavior within nests,â Frontiers in Ecology and Evolution, 7, 51. DOI: 10.3389/fevo.2019.00051