Chemically modified Transitional Metal Dichalcogenide thin films enable unique power sources driven entirely by a chemical potential gradient. Electrical current (11.9 μA mg
â1) and potential (525 mV) are reversibly produced by localized small molecule doping under ambient conditions. Using a variety of liquid-film interactions, we show that the nano-confinement of liquid dopants (including H
2O) within this porous structure allows facile conversion of heat of adsorption to electricity. An inverse length-scaling of the maximum power as L
â1.03 that creates specific powers as large as 30.0 kW kg
â1 highlights the potential for microscale energy generation. We demonstrate that this Asymmetric Chemical Doping (ACD) electricity induction method can be scaled using a printing/patterning technique for novel electricity generators. This allows us to develop a conformable thin film voltage generator that can be grafted onto human skin in a facile manner.
References:
(1) Liu, A. T.;* Kunai, Y.;* Liu, P.; Kaplan, A.; Cottrill, A. L.; Smith-Dell, J. S.; Strano, M. S. Adv. Mater. 2016, 28, 9752.
(2) Liu, A. T.;* Mahajan, S. G.;* Cottrill, A. L.; Kunai, Y.; Bender, D.; Castillo, J.; Gibbs, S. L.; Strano, M. S. Energy & Environmental Science 2016, 9, 1290
(3) Liu, A. T.;* Kunai, Y.;* Cottrill, A. L.; Koman, V. B.; Liu, P.; Kozawa, D.; Gong, X.; Strano, M. S. J. Am. Chem. Soc. 2017, 139, 15328.