2016 AIChE Annual Meeting
(70a) Economic and Environmental Assessment of Methane to Ethylene Via Oxidative Coupling
Recently, Siluria Technologies has patented a novel inorganic polycrystalline nanowire OCM catalyst with commercially viable selectivities and conversions. They report methane conversions of 20-30% with a 60-70% selectivity to two-carbon products(ethane, ethylene, and acetylene) on a long-lived catalyst material. With this improved catalyst performance, full scale OCM reactors may start to be economically viable as competitors with traditional hydrocarbon cracking.
This work proposes one possible process design for the production of ethylene (and byproducts) from methane and air or oxygen. We assume a claimed reactor performance and design a separation system to make 99.95% pure ethylene for polymerization. We are interested in producing both economic (via detailed costing of an optimized design) and environmental (via LCA) performance targets on this OCM process to possibly show its potential to produce valuable products from methane in a low-cost and low-impact way.
We will discuss the possible process choices, a simulation of our proposed separation system, a pinch analysis/heat integration of that system, a full cost analysis, and a cradle-to-gate LCA of the energy and carbon impact of OCM versus conventionally produced ethylene.