2008 Annual Meeting
(310e) Simulation of Profile Evolution In Shallow Trench Formation by Plasma Etching
Authors
A two-dimensional numerical fluid model was developed to investigate the dual-coil and dual-feed reactor design on the radial profiles of plasma species, namely etch products and positive ions. The dual-coil parameter was determined to be effective in tailoring the radial ion flux profile at pressures higher than 20 mT, while the dual-feed parameter was shown to alter the etch product transport in the convection-dominant flow regime. Coupling of the reactor scale model to the feature scale model allowed investigation of subtle yet important changes in the etched feature profile from the center to the edge of the wafer. This hybrid model suggests that the radial decrease in the etch depth from wafer center to edge, seen from a set of DOE, is caused by an inherent net neutral-to-ion ratio decrease. In addition, the increase in the silicon sidewall angle from wafer center to edge can be qualitatively explained by a decrease in the concentration of the etch products. To study the local variations at the die/meso scale, the simulation domain is expanded to study the effects of etch product distributions at the die level.