Metabolic Engineering X
The Impact of Orthogonal Gene Expression on Heterologous Pathway Productivity
Authors
The  impact  of  orthogonal  gene  expression  on  heterologous  pathway  productivity Â
Â
The  goals  of  metabolic  engineering  are  often  at  odds  with  the  hostâ??s  own  cellular Â
objectives.  For  example,  the  heterologous  overproduction  of  a  secondary  metabolite Â
such  as  lycopene  in  Escherichia  coli  directly  competes  with  the  growth  objective  of  E.  coli Â
by  diverting  carbon  flux  away  from  the  native  metabolic  network  (i.e.,  biomass Â
formation)  and  toward  lycopene  accumulation  through  the  DXP  pathway.  A  significant Â
amount  of  work  in  the  metabolic  engineering  community  has  been  carried  out  to Â
address  this  problem  largely  through  investigating  carbon  and  redox  balancing Â
between  heterologous  pathways  and  the  hostâ??s  metabolism.  While  this  is  essential  for Â
successful  pathway  engineering,  very  little  attention  has  been  given  to  balancing  the Â
energy  and  material  flux  through  the  process  of  heterologous  gene  expression,  which  is Â
typically  shared  with  the  host.  That  is,  heterologous  expression  traditionally  relies  on Â
native  RNA  polymerases  and  ribosomes.  If  the  energetic  cost  or  burden  of  expression  is Â
at  least  partially  due  to  the  process  of  gene  expression  itself,  and  not  solely  the  product Â
(e.g.,  pathway  enzymes),  then  expressing  a  heterologous  pathway  using  orthogonal Â
cellular  machinery  (i.e.,  RNAPs  and  ribosomes  that  act  only  on  the  heterologous Â
pathway  genes)  should  be  less  costly  to  the  host  than  expressing  the  same  pathway Â
enzymes  via  native  transcription  and  translation.  In  particular,  orthogonal  gene Â
expression  systems  that  provide  a  stable,  dedicated  supply  of  cellular  machinery  should Â
alleviate  burden  and  increase  growth  rate  (and  therefore  productivity)  if  the Â
concentrations  of  available  native  RNA  polymerases  and  ribosomes  in  the  cell  are  rate Â
limiting.  Building  from  recent  work  in  synthetic  biology  that  has  demonstrated Â
functional  orthogonal  transcription-Ââ?â??translation  processes,  our  work  experimentally Â
investigates  the  impact  of  orthogonally  expressing  three  heterologous  enzymes  for Â
lycopene  biosynthesis  in  E.  coli  on  fermentation  productivity,  yield  and  titer.  Â