8th World Congress on Particle Technology
(54x) Lattice Boltzmann Simulations of Porous Particulate Flows
Authors
Reference
[1] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J. Fluid Mech., 271, 285-310.
[2] Hill, R.J., Koch, D.L., Ladd, A.J.C., 2001. The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213-241.
[3] Van der Hoef, M.A., Beetstra, R., Kuipers, J.A.M., 2005. Lattice Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233-254.
[4] Zhao, Y.F., Li, H., Ye, M., Liu, Z.M., 2013. 3D numerical simulation of a large scale MTO fluidized bed reactor. Ind. Eng. Chem. Res. 52, 11354-11364.
[5] Noymer, P.D., Glicksman, L.R., Devendran, A., 1998. Drag on a permeable cylinder in steady flow at moderate Reynolds numbers. Chem. Eng. Sci. 53, 2859-2869.
[6] Zhu, Q.Y., Chen, Y.Q., Yu, H.Z., 2014. Numerical simulation of the flow around and through a hygroscopic porous circular cylinder. Comput. Fluids 92, 188-198.
[7] Wang, L., Wang, L.-P., Guo, Z.L., Mi, J.C., 2015. Volume-averaged macroscopic equation for fluid flow in moving porous media. Int. J. Heat Mass Trans. 82, 357-368.
[8] Chen, S.Y., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364.
[9] Fortes, A.F., Joseph, D.D., Lundgren, T.S., 1987. Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467-483.