Fluidization XVI
Directly Irradiated Fluidized Bed Reactor for Thermochemical Energy Storage and CO2/H2O Splitting
Authors
This work deals with the development of a directly irradiated labâscale fluidized bed reactor targeted at maximizing the collection of solar energy, withstanding the highâconcentrated flux typical of highâtemperature CSP applications (> 1 MW/m2) and ensuring a uniform temperature distribution of the reactive material. The reactor is made of two concentric circular columns: the internal one (OD=12 mm, ID=10 mm, length=80 mm) is referred as riser, the external one (OD=21 mm, ID=16 mm, length=70 mm) as annulus. The upper part of the annulus column is connected to a conical section (internal angle=30°, height=120 mm), which represents the freeboard of the reactor and hosts, at its extremity, a transparent quartz window to let the solar radiation enter keeping seal-tight operation of the reactor. During the reactor operation, a gas stream is fed into the internal column to induce the rise of a dense particle suspension, typically under fast fluidization conditions. At the outlet of the riser, the dense particle suspension directly interacts with the solar concentrated radiation (simulated by mean of a shortâarc Xe lamp) and increase its temperature. In the freeboard zone, due to the cross-section increase, the gas velocity is progressively reduced, and the solid particles fall down on the conical section and descend along it to eventually convey into the annulus column. Here, the particles move by gravity towards the bottom, where they re-enter the riser by mean of four small holes drilled in the riser column. During their motion along the annulus section, the âhotâ particles transfer their heat to the riser column, thus preheating the rising dense suspension prior to its interaction with the concentrated solar radiation. This feature allows an autothermal operation of the reactor, enabling the possibility of reaching higher reaction temperatures. Gas exit is provided at the top of the conical section, just below the transparent window, by two small tubes (OD=6 mm, ID= 4 mm). The total inventory of the reactor is in the order of 15â25 g. As mentioned above, the solar concentrated radiation is simulated by a shortâarc Xe lamp of 7 kWel coupled with an elliptical reflector. The use of Xe lamps to simulate the solar spectrum is well established in the literature since the differences with the solar spectrum are quite small, especially in the visible spectral range. At full power, a peak flux of 2 MW/m2 is obtained in the focal point, while the total thermal power supplied to the system is of about 1.8 kWth. Temperature measurements are made by two K-type thermocouples: one at the bottom of the riser (Tdown), the other at the top of the annulus (Tup). The former measure the temperature of the âcoldâ material before its rise, the latter measure the temperature of the âhotâ material before it descends along the annulus. It is worth noting that Tup does not represent the higher temperature reached by the material, as the highest temperature is probably experienced by the particles during their upward flight in the conical freeboard section. Unfortunately, this temperature cannot be currently measured in an affordable way. Exhaust gas are sent to a mass spectrometer to analyze the concentration of the relevant species, namely Ar, CO, CO2, N2, O2 for the performed experiments.
The experimental campaign on the fluidized bed reactor consisted in: i) thermal and hydrodynamic characterization under inert conditions; ii) characterization of a thermochemical energy storage process; iii) characterization of a CO2 splitting process.
The thermal and hydrodynamic characterization of the fluidized bed reactor was performed by means of different inert granular material, characterized by different density, colour and particle dimensions. Silica sand, silicon carbide and bauxite with a mean Sauter diameter in the 150â300 mm were used as bed materials. Steady state temperature of 900â1100 °C were reached in the system depending on material and fluidization conditions. Some of the materials exhibited a tendency to agglomerate and sinter during the reactor operation and were then rejected for the subsequent tests. This phenomenon was probably emphasized by the presence of small quantities of impurities which promoted the processes of agglomeration and sintering.
Concerning the thermochemical energy storage process, carbonation and calcination of a Caâbased sorbent was achieved. More into detail, limestone particles were used as bed materials, and several iterated calcination and carbonation reaction cycles were successfully performed.
Finally, the CO2 splitting process was performed using solid particles of a perovskite material made of a mixture of La and Sr as âAâ cation and Fe as âBâ cation. To perform these tests, the system was initially operated using an inert material and heated up to 1000 °C using air as fluidizing gas. Then, the inlet gas was switched to pure N2 (99.999%v) and, through a pneumatic system, a small amount (1â2 g) of perovskite was fed to the system by one of the two outlet tubes. Exhaust gas was continuously analyzed to follow the O2 evolution. Once the material was completely reduced (no further O2 release), the inlet gas was switched to pure CO2 (99.999%v) so to re-oxidize the perovskite material and produce CO. During this step, the exhaust gas was continuously analysed to monitor the CO concentration. Finally, when no more CO was produced, the inlet gas stream was switched back to pure N2 to reduce the material again and start a new reaction cycle. The oxidation/reduction cycles were then performed isothermally at a temperature of about 1000 °C. Several iterated reaction cycles were performed and, for each cycle, the amount of O2 and CO produced were evaluated. A first estimate of thermal/chemical efficiency for the proposed reactor configuration was performed.