2018 Spring Meeting and 14th Global Congress on Process Safety
(82a) Metal Oxide Based Solar-Driven Two-Step CH4 Reforming and H2o/CO2 Splitting Cycle
Recently, metal oxide (MO) based two-step CH4 reforming and H2O/CO2 splitting cycle receiving much attention for co-production of syngas and H2. In first step, the MO is reduced using CH4 as the reducing agent producing synags (combined H2 and CO). The reduced MO can be re-oxidized using H2O, CO2, or combined stream of H2O/CO2 for the production of H2, CO, or syngas. In this study, ceria is utilized as the redox material for co-production of syngas and H2 via solar-driven two-step CH4 reforming and H2O/CO2 splitting cycle. At first, the equilibrium thermodynamic analysis is performed to study the effect of CH4/ceria ratio on equilibrium compositions and the temperatures required to achieve higher levels of fuel production. Likewise, the solar reactor efficiency analysis is conducted to determine the solar-to-fuel energy conversion efficiency of this cycle. Ceria is further synthesized and characterized using various analytical techniques. The synthesized ceria is further tested towards CH4 reforming and H2O/CO2 splitting reaction using a thermogravimetric analyzer (coupled with GC-MS). Effects of CH4 concentration, reforming and splitting temperatures on the fuel production is also explored. The obtained results are compared with previous thermochemical cycles and will be presented in detail.