2016 AIChE Spring Meeting and 12th Global Congress on Process Safety
(69a) Copper-Graphite Nanocomposite Electrodes for the Electrochemical Reduction of Carbon Dioxide to Methanol
Authors
To this end, the goal of our study is to synthesize copper-graphite nanocomposite material through powder technology techniques to be used as electrodes for the electrochemical reduction of carbon dioxide to methanol. Nano-copper, prepared via the electroless deposition technique, was mixed with 6 different graphite powder concentrations (2.5, 5, 7.5, 10, 20, 30 wt%) . The mixtures were uniaxially pressed at 700 MPa and sintered at 1000 oC. The synthesized electrodes were characterized via FE-SEM and XRD to ensure the homogeneity of the material. The electrodes were used in an electrochemical cell, which contained potassium hydrogen carbonate as the electrolyte. The open circuit voltages for the different electrodes in carbon dioxide and nitrogen atmospheres were measured. Also, the applied voltage – current plots were made under the two atmospheres. Nernst plots were made for all six electrode-electrolyte pairs and were compared with that for the pure copper electrode. In addition, stability tests were performed on the different electrode compositions. The initial results are promising as they show equivalence of the nanocomposites with the pure copper electrodes in terms of carbon dioxide reduction potential. Yet, their stability is significantly improved.