Breadcrumb
- Home
- Publications
- Proceedings
- 2012 Spring Meeting & 8th Global Congress on Process Safety
- 12th Topical Conference on Gas Utilization
- LNG Simulations and Controls
- (122e) Modeling of Ground Flare Pits
This study examines the use of Computational Fluid Dynamics (CFD) to accurately model plumes from ground flares and the downwind temperature distribution. The CFD model is first validated by comparing its results with commonly used dispersion models such as PHAST and CALPUFF. The flow features of a ground flare plume rising in crosswind are then discussed. In particular the plume acts as what is commonly referred to as a “jet in cross flow.” In this type of flow, counter rotating vortices are known to form. These vortices are not represented in commonly used Gaussian plume models.
The use of two adjacent flare pits is then investigated. The interaction of the two pairs of counteracting vortices is discussed, as it influences the downwind temperature distribution. The results show that the distance between adjacent flare pits is of importance when planning multi-flare pit operations.