2025 AIChE Annual Meeting
(617d) Surprises in Injection Force and Flow Rheology of Physical Hydrogels
Dynamic materials may be used to directly deliver therapeutic cells as well as encapsulate biologics which are sensitive to the localized shear stress and inhomogeneities in the flow field9,11,12, highlighting the need for better characterization of the physics of capillary flow for these set of materials. A suite of rheological and mechanical testing tools exists to probe the linear and low-shear rate (below approximately 100 sec-1) behavior, but unexpected behaviors may emerge at high shear rates, such as shear banding and wall-slip, even at low Reynolds number13,14. A critical evaluation of the assumptions used to extrapolate material properties from low-shear-rate measurements, such as viscosity flow sweeps, to high-shear-rate behavior is necessary15.
In contrast to previous approaches which characterize synthetically complex multicomponent systems, we utilize a simple dynamically crosslinked hydrogel with easily tunable crosslinking dynamics which enables mechanistic coupling of molecular crosslink dynamics and macroscopic mechanical properties. Based on the addition of a small-molecule surfactant, the crosslink dynamics of the network are altered, leading to faster rearrangement kinetics16. Despite its chemical simplicity, this hydrogel system displays complex elastoviscoplastic behavior, including shear-thinning, yield stress, and high extensibility, similar to other nanostructured soft materials17.
In this talk, I will demonstrate the use of capillary flow behavior of dynamic hydrogels to explain non-monotonic trends in their injection force with regards to crosslink dynamicity. By connecting measurements from analytical techniques covering a range of shear rates including rheometry, viscometry, and an in situ capillary microscope optical rheometer, we show many that current methods of characterizing flow curves cannot predict observed trends in injection force. Critically, we find that strong wall slip dominates the flow profile at high shear rate, leading to unexpectedly low injection forces, and nonuniform trends in injection force with respect to crosslink dynamics. Finally, we give new criteria for hand injectability based on a rheological model which accounts for power law shear-thinning and wall slip.
(1) Correa, S.; Grosskopf, A. K.; Hernandez, H. L.; Chan, D.; Yu, A. C.; Stapleton, L. M.; Appel, E. A. Translational Applications of Hydrogels. Chemical Reviews 2021. https://doi.org/10.1021/ACS.CHEMREV.0C01177.
(2) Morgan, F. L. C.; Moroni, L.; Baker, M. B. Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials 2020, 9 (15), 1901798. https://doi.org/10.1002/adhm.201901798.
(3) Wang, Z.; Xu, J.; Wu, X.; Han, M.; Peng, R.; Zhao, R.; Qin, M.; Li, T.; Yin, J.; Yu, L.; Li, Y.; Wu, H.; Lin, Z.; Wang, L.; Hu, Y.; Wu, Y. A Sprayable Janus Hydrogel as an Effective Bioadhesive for Gastrointestinal Perforation Repair. Advanced Functional Materials 2024, 34 (48), 2408479. https://doi.org/10.1002/adfm.202408479.
(4) Stapleton, L. M.; Lucian, H. J.; Grosskopf, A. K.; Smith, A. A. A.; Totherow, K. P.; Woo, Y. J.; Appel, E. A. Dynamic Hydrogels for Prevention of Post-Operative Peritoneal Adhesions. Advanced Therapeutics 2021, 4 (3), 2000242. https://doi.org/10.1002/adtp.202000242.
(5) Stapleton, L. M.; Steele, A. N.; Wang, H.; Lopez Hernandez, H.; Yu, A. C.; Paulsen, M. J.; Smith, A. A. A.; Roth, G. A.; Thakore, A. D.; Lucian, H. J.; Totherow, K. P.; Baker, S. W.; Tada, Y.; Farry, J. M.; Eskandari, A.; Hironaka, C. E.; Jaatinen, K. J.; Williams, K. M.; Bergamasco, H.; Marschel, C.; Chadwick, B.; Grady, F.; Ma, M.; Appel, E. A.; Woo, Y. J. Use of a Supramolecular Polymeric Hydrogel as an Effective Post-Operative Pericardial Adhesion Barrier. Nat Biomed Eng 2019, 3 (8), 611–620. https://doi.org/10.1038/s41551-019-0442-z.
(6) Eckman, N.; Nejatfard, A.; Cavet, R.; Grosskopf, A. K.; Appel, E. A. Biomaterials to Enhance Adoptive Cell Therapy. Nat Rev Bioeng 2024, 2 (5), 408–424. https://doi.org/10.1038/s44222-023-00148-z.
(7) Roth, G. A.; Picece, V. C. T. M.; Ou, B. S.; Luo, W.; Pulendran, B.; Appel, E. A. Designing Spatial and Temporal Control of Vaccine Responses. Nat Rev Mater 2022, 7 (3), 174–195. https://doi.org/10.1038/s41578-021-00372-2.
(8) Marco-Dufort, B.; Iten, R.; Tibbitt, M. W. Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks. J. Am. Chem. Soc. 2020, 142 (36), 15371–15385. https://doi.org/10.1021/jacs.0c06192.
(9) Eckman, N.; K. Grosskopf, A.; Jiang, G.; Kamani, K.; S. Huang, M.; Schmittlein, B.; C. Heilshorn, S.; Rogers, S.; A. Appel, E. Crosslink Strength Governs Yielding Behavior in Dynamically Crosslinked Hydrogels. Biomaterials Science 2025. https://doi.org/10.1039/D4BM01323A.
(10) Morley, C. D.; Ding, E. A.; Carvalho, E. M.; Kumar, S. A Balance between Inter- and Intra-Microgel Mechanics Governs Stem Cell Viability in Injectable Dynamic Granular Hydrogels. Advanced Materials 2023, 35 (44), 2304212. https://doi.org/10.1002/adma.202304212.
(11) Wang, W.; Nema, S.; Teagarden, D. Protein Aggregation—Pathways and Influencing Factors. International Journal of Pharmaceutics 2010, 390 (2), 89–99. https://doi.org/10.1016/j.ijpharm.2010.02.025.
(12) Grosskopf, A. K.; Roth, G. A.; Smith, A. A. A.; Gale, E. C.; Hernandez, H. L.; Appel, E. A. Injectable Supramolecular Polymer–Nanoparticle Hydrogels Enhance Human Mesenchymal Stem Cell Delivery. Bioengineering & Translational Medicine 2020, 5 (1), e10147. https://doi.org/10.1002/btm2.10147.
(13) Fielding, S. M. Shear Banding in Soft Glassy Materials. Rep. Prog. Phys. 2014, 77 (10), 102601. https://doi.org/10.1088/0034-4885/77/10/102601.
(14) D. Martin, J.; Hu, Y. T. Transient and Steady-State Shear Banding in Aging Soft Glassy Materials. Soft Matter 2012, 8 (26), 6940–6949. https://doi.org/10.1039/C2SM25299F.
(15) Pipe, C. J.; Majmudar, T. S.; McKinley, G. H. High Shear Rate Viscometry. Rheol Acta 2008, 47 (5), 621–642. https://doi.org/10.1007/s00397-008-0268-1.
(16) Song, Y. E.; Eckman, N.; Sen, S.; Jons, C. K.; Saouaf, O. M.; Appel, E. A. Highly Extensible Physically Crosslinked Hydrogels for High-Speed 3D Bioprinting. Advanced Healthcare Materials 2025, 2404988. https://doi.org/10.1002/adhm.202404988.
(17) Narayanan, P.; Pramanik, R.; Arockiarajan, A. A Hyperelastic Viscoplastic Damage Model for Large Deformation Mechanics of Rate-Dependent Soft Materials. European Journal of Mechanics - A/Solids 2023, 98, 104874. https://doi.org/10.1016/j.euromechsol.2022.104874.