Varda's high-cadence, low-cost unmanned spacecraft is now regularly being used for in-space crystallization of pharmaceuticals [1]. With three vehicles returned from space, one currently in orbit, and rapidly increasing cadence and capacity, Varda's platform has opened the aperture of mixing and fluid behavior that can be accessed to improve materials processing. As the commercialization of reusable rockets continues to increase access to low-Earth orbit [2,3], Varda's increasing cadence and processing capacity unlocks opportunities for both pharmaceutical R&D and manufacturing for therapeutic applications [4,5].
This talk will provide an overview of recent progress for industrial applications, key benefits of microgravity across both small molecules [6,7] and biologics [8-10], and a discussion of the underlying separation and fluid transport phenomenon [11], together with supporting experimental and computational data generated by Varda and its collaborators to date [1,12,13,14].
Bauser, H. C., Smith, P. A., Parent, S. D., Chan, L. R., Bhavsar, A. S., Condon, K. H., ... & Radocea, A. (2024). Return of the Ritonavir: A Study on the Stability of Pharmaceuticals Processed in Orbit.
Boysen, A. A., Kunsa, T. A., Okseniuk, K. J., & Magill, H. R. (2024). An economic case for distributed, on-demand down-mass systems in low Earth orbit. In AIAA AVIATION FORUM AND ASCEND 2024 (p. 4801).
Jones, H. W. (2018, July). The future impact of much lower launch cost. In International Conference on Environmental Systems (ICES) (No. ARC-E-DAA-TN56846).
Miller, L., Mulligan, M. K., Savin, K. A., Tuma, S., & Wilson, A. M. (2025). Crystallization of Small Molecules in Microgravity Using Pharmaceutical In-Space Laboratory–Biocrystal Optimization eXperiment (PIL-BOX). Crystals, 15(6), 527
Paulson, J., Miller, L., Tuma, S., Mulligan, M. K., Savin, K. A., & Wilson, A. M. (2025). Microgravity-Grown Crystals as Seeds for Pharmaceutical Compounds. Crystals, 15(9), 825.
Reichert, P., Prosise, W., Fischmann, T. O., Scapin, G., Narasimhan, C., Spinale, A., ... & Strickland, C. (2019). Pembrolizumab microgravity crystallization experimentation. npj Microgravity, 5(1), 28
Mulligan, M. K., Tuma, S., Mullins, S., Savin, K. A., & Wilson, A. (2025). Protein Crystallization in Microgravity: Commercialization and the Next Chapter. Current Stem Cell Reports, 11(1), 1-7.
Snell, E. H., & Helliwell, J. R. (2005). Macromolecular crystallization in microgravity. Reports on progress in physics, 68(4), 799.
Poodt, P. W. G., Christianen, P. C. M., Enckevort, W. V., Maan, J. C., & Vlieg, E. (2008). The critical Rayleigh number in low gravity crystal growth from solution. Crystal Growth and Design, 8(7), 2194-2199.
Kanjakha Pal, Adrian Radocea (2024). Crystal Growth and Design, 26(6), 2370-2383.
Assunção, M., Moroney, K. M., O'Kiely, D., & Vynnycky, M. (2025). Asymptotic model for the interplay of sedimentation and crystallization. Physical Review Fluids, 10(7), 074302.
Assunção, M., Moroney, K. M., O’Kiely, D., & Vynnycky, M. (2025). Analysis of a Model for Polymorphism in Gravity-Driven, Antisolvent Crystallization. SIAM Journal on Applied Mathematics, 85(3), 1261-1286.