2025 AIChE Annual Meeting

(550a) Evaluating Martini Forcefield Coarse-Grained Models for Polystyrene Sulfonate Polymers

Authors

Audrey Collins, University of Delaware
Arthi Jayaraman, University of Delaware, Newark
Polyelectrolytes are a class of polymeric materials with a wide range of applications in materials design for energy applications1, nanomedicine2, surface coatings3, and many more. Polyelectrolytes also have relevance in molecular biology as nature uses polymeric biomacromolecules with charged components in the form of proteins, peptides, proteoglycans, DNA, RNA and more4. Understanding the solution behavior of polyelectrolytes is critical for the advancement of materials design using charged polymers. All atom simulations have been employed to study polyelectrolyte conformational behavior under different conditions for various polymer chemistries, however many relevant material properties of interest require system sizes that are significantly larger. Coarse-grained models for polyelectrolytes have been developed such as implicit solvent bead-spring models5 and explicit solvent models6 using the MARTINI forcefield7-9. In this work, we seek to model the strong polyelectrolyte sodium polystyrene sulfonate (NaPSS) using a model based on the newer MARTINI v3 forcefield with nonpolarizable water beads, and a model using the older MARTNI v2 forcefield with polarizable water beads. We use these two CG models to simulate solutions of NaPSS at various polymer concentrations, salt concentrations, and degree of polymerization to evaluate the ability for each model to match radii of gyration observed in experiments10.

Works Cited

(1) Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011, 88 (4), 981-1007. DOI: https://doi.org/10.1016/j.apenergy.2010.09.030.

(2) Hammond, P. T. Polyelectrolyte Multilayered Nanoparticles: Using Nanolayers for Controlled and Targeted Systemic Release. Nanomedicine 2012, 7 (5), 619-622. DOI: 10.2217/nnm.12.47.

(3) Claesson, P. M.; Poptoshev, E.; Blomberg, E.; Dedinaite, A. Polyelectrolyte-mediated surface interactions. Advances in Colloid and Interface Science 2005, 114-115, 173-187. DOI: https://doi.org/10.1016/j.cis.2004.09.008.

(4) Rubinstein, M.; Papoian, G. A. Polyelectrolytes in biology and soft matter. Soft Matter 2012, 8 (36), 9265-9267, 10.1039/C2SM90104H. DOI: 10.1039/C2SM90104H.

(5) Bollinger, J. A.; Grest, G. S.; Stevens, M. J.; Rubinstein, M. Overlap Concentration in Salt-Free Polyelectrolyte Solutions. Macromolecules 2021, 54 (21), 10068-10073. DOI: 10.1021/acs.macromol.1c01491.

(6) Vögele, M.; Holm, C.; Smiatek, J. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium). The Journal of Chemical Physics 2015, 143 (24). DOI: 10.1063/1.4937805 (acccessed 10/21/2024).

(7) de Jong, D. H.; Singh, G.; Bennett, W. F. D.; Arnarez, C.; Wassenaar, T. A.; Schäfer, L. V.; Periole, X.; Tieleman, D. P.; Marrink, S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of Chemical Theory and Computation 2013, 9 (1), 687-697. DOI: 10.1021/ct300646g.

(8) Souza, P. C. T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M. H.; Wassenaar, T. A.; et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods 2021, 18 (4), 382-388. DOI: 10.1038/s41592-021-01098-3.

(9) Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation 2008, 4 (5), 819-834. DOI: 10.1021/ct700324x.

(10) Takahashi, Y.; Matsumoto, N.; Iio, S.; Kondo, H.; Noda, I.; Imai, M.; Matsushita, Y. Concentration Dependence of Radius of Gyration of Sodium Poly(styrenesulfonate) over a Wide Range of Concentration Studied by Small-Angle Neutron Scattering. Langmuir 1999, 15 (12), 4120-4122. DOI: 10.1021/la9810861.