2025 AIChE Annual Meeting

Electrodeposited Palladium and Tin Bimetallic Catalysts for Efficient Ethanol Oxidation to Acetate in Alkaline Electrolyte

Acetic acid (AA), an important commodity chemical, is produced via methanol carbonylation, emitting one ton of CO₂ per ton of product. As a sustainable alternative, we report the electrochemical oxidation of bioethanol to selectively produce AA using a novel Pd-Sn alloy catalyst with nanodendritic morphology supported on nickel foam (PdSn@NF). The catalyst was synthesized via electrodeposition, and the presence of ammonium chloride in the deposition bath was found to critically affect the Pd-to-Sn ratio and, consequently, the catalyst performance. The vital role of catalyst structure, surface composition, and morphology on the activity and selectivity of PdSn@NF towards the EOR was revealed by X-ray diffractometry, emission spectroscopy, and electron microscopy. Specifically, the nanodendritic morphology of the PdSn@NF resulted in the formation of highly active undercoordinated sites, while in situ Raman spectroscopy suggested that Sn helps mitigate CO poisoning – likely a result of a lowered d-band center. Due to the strong synergy between the structural and electronic properties of PdSn@NF, ~100% faradaic efficiency (FE) to AA at 400 mA cm-2 was achieved with lab-grade ethanol (LGE) in an H-type cell. In continuous flow operation, the FE declined due to product accumulation on active sites; however, this was mitigated by employing current pulses to remove surface-bound products. An optimized pulsing protocol restored ~100% FE of AA for LGE and achieved ~94% FE with bioethanol at 400 mA cm-2 despite the presence of fermentation impurities. This study underscores the promise of PdSn@NF as a highly selective and industrially relevant electrocatalyst for sustainable AA production.