Breadcrumb
- Home
- Publications
- Proceedings
- 2025 AIChE Annual Meeting
- Poster Sessions
- General Poster Session
- (588cu) Electrochemical Li Extraction from Brine with Spinel MnO2-Based Materials
Aiming to investigate the same properties in l-MnO2, we used DFT implemented by the Vienna Ab Initio Simulation Package (VASP) to perform numerous simulations on the geometry optimization as well as doping this composition with other metals to study the structural stability during ionic intercalation. The carried-out calculations included the charge redistribution after the addition of a dopant. It was concluded that a stoichiometric amount of doping must be implemented to fully mitigate the JTE present in Mn. The solid-state nudged elastic band method9 was implemented to study the irreversible phase change present in the spinel MnO2 electrodes upon cycling.10 These results elucidate how even small amounts of doping (³5%) can mitigate Mn dissolution and enhance the capacity upon cycling. This fundamental study was carried out for the application of l-MnO2 as a working electrode in a flow cell to obtain a better means of extracting Li from brine.
(1) Zavahir, S.; Elmakki, T.; Gulied, M.; Ahmad, Z.; Al-Sulaiti, L.; Shon, H. K.; Chen, Y.; Park, H.; Batchelor, B.; Han, D. S. A Review on Lithium Recovery Using Electrochemical Capturing Systems. Desalination. Elsevier B.V. March 15, 2021. https://doi.org/10.1016/j.desal.2020.114883.
(2) Wu, L.; Zhang, C.; Kim, S.; Hatton, T. A.; Mo, H.; Waite, T. D. Lithium Recovery Using Electrochemical Technologies: Advances and Challenges. Water Research. Elsevier Ltd August 1, 2022. https://doi.org/10.1016/j.watres.2022.118822.
(3) Trócoli, R.; Erinmwingbovo, C.; La Mantia, F. Optimized Lithium Recovery from Brines by Using an Electrochemical Ion-Pumping Process Based on λ-MnO2 and Nickel Hexacyanoferrate. ChemElectroChem 2017, 4 (1), 143–149. https://doi.org/10.1002/celc.201600509.
(4) Kim, S.; Joo, H.; Moon, T.; Kim, S. H.; Yoon, J. Rapid and Selective Lithium Recovery from Desalination Brine Using an Electrochemical System. Environ Sci Process Impacts 2019, 21 (4), 667–676. https://doi.org/10.1039/c8em00498f.
(5) Thackeray, M. M. Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/Li[Sub x]Mn[Sub 2]O[Sub 4] Cells. Electrochemical and Solid-State Letters 1999, 1 (1), 7. https://doi.org/10.1149/1.1390617.
(6) Ning, F.; Xu, B.; Shi, J.; Su, H.; Wu, M.; Liu, G.; Ouyang, C. Ab Initio Investigation of Jahn-Teller-Distortion-Tuned Li-Ion Migration in λ-MnO2. J Mater Chem A Mater 2017, 5 (20), 9618–9626. https://doi.org/10.1039/c7ta01339f.
(7) Kim, M. A.; Zimmerer, E. K.; Piontkowski, Z. T.; Rodriguez, M. A.; Schorr, N. B.; Wygant, B. R.; Okasinski, J. S.; Chuang, A. C.; Lambert, T. N.; Gallaway, J. W. Li-Ion and Na-Ion Intercalation in Layered MnO2 Cathodes Enabled by Using Bismuth as a Cation Pillar. J Mater Chem A Mater 2023, 11 (21), 11272–11287. https://doi.org/10.1039/d3ta00684k.
(8) Brady, A. B.; Liu, P.; Brady, A. B.; Tallman, K. R.; Takeuchi, E. S.; Marschilok, A. C.; Takeuchi, K. J.; Liu, P. Transition Metal Substitution of Hollandite Alpha-MnO2: Enhanced Potential and Structural Stability on Lithiation from First-Principles Calculation DISCLAIMER Transition Metal Substitution of Hollandite α-MnO 2 : Enhanced Potential and Structural Stability on Lithiation from First Principles Calculation; 2019.
(9) Sheppard, D.; Xiao, P.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A Generalized Solid-State Nudged Elastic Band Method. Journal of Chemical Physics 2012, 136 (7). https://doi.org/10.1063/1.3684549.
(10) Liu, T.; Dai, A.; Lu, J.; Yuan, Y.; Xiao, Y.; Yu, L.; Li, M.; Gim, J.; Ma, L.; Liu, J.; Zhan, C.; Li, L.; Zheng, J.; Ren, Y.; Wu, T.; Shahbazian-Yassar, R.; Wen, J.; Pan, F.; Amine, K. Correlation between Manganese Dissolution and Dynamic Phase Stability in Spinel-Based Lithium-Ion Battery. Nat Commun 2019, 10 (1). https://doi.org/10.1038/s41467-019-12626-3.