2025 AIChE Annual Meeting

(454d) Customizing Surface Grafting and Interlayer Functionalization for PFOA Separation in Polyamide Membranes

Authors

Mark Elliott, University of Alabama
Mostafa Dadashi Firouzjaei, University of Alabama
Emerging contaminants, such as per- and polyfluoroalkyl substances (PFAS), pose significant challenges to ensuring a clean drinking water supply. This study evaluates various fabrication techniques for incorporating silver-based metal-organic frameworks (Ag-MOFs) into polyamide (PA) nanofiltration (NF) membranes to enhance perfluorooctanoic acid (PFOA) separation and anti-fouling performance. Various characterizations, including scanning and transmission electron microscopy, carboxylic group density, molecular weight cut-off (MWCO) measurements, and zeta potential analyses revealed that each method imparts distinct physicochemical and morphological characteristics to the modified membranes. Among all fabricated membranes, the interlayered Ag-MOFs (UI-MOF) obtained the highest permeance (13.7 Lm-2h-1bar-1) but the lowest PFOA rejection (88.9%), likely due to its loose PA network with large MWCO (522 Da) and high carboxylic group density (82.0 sites/nm2). In contrast, the dip-coating surface-grafted Ag-MOFs (DS-MOF) achieved the highest PFOA rejection (93.4 %), attributed to its narrow pores (average pore diameter of 10 Å ± 0.06). Additionally, all modified membranes showed superior anti-fouling performance (flux recovery ratio > 94.0%) compared to the Blank PA membrane, likely due to the improved surface hydrophilicity of the modified membranes.