2025 AIChE Annual Meeting

(571d) Converting Carbon Dioxide into Carbon Nanotubes By Reacting with Ethane

Authors

Yong Yuan - Presenter, UNIVERSITY OF DELAWARE
Erwei Huang, Brookhaven National Laboratory
Sooyeon Hwang, Brookhaven National Laboratory
Ping Liu, Brookhaven National Laboratory
Jingguang G. Chen, University of Delaware
The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30% of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.