2024 AIChE Annual Meeting
(649d) A Computationally Informed Unified View on the Effect of Polarity and Sterics on the Glass Transition in Vinyl-Based Polymer Melts
Authors
Jin, T. - Presenter, University of Wisconsin-Madison
Coley, C., MIT
Alexander-Katz, A., Massachusetts Institute of Technology
We unveil a unified view on the effect of side chains on the glass transition temperatures (Tg) in polymer melts by using molecular dynamics simulations, density functional theory calculations, and available experimental data. We use acrylates as a model system and evaluate the effect of n-alkyl side chains on Tg. We find that backbone dihedral angle fluctuations follow established patterns due to sterics, as expected. However, we also find that the dihedral angle orthogonal to the backbone, which normally is neglected when discussing the effect on Tg, introduces a secondary rotational degree of freedom which strongly impacts Tg. These results are in agreement with experiments and generalize to multiple other polymer systems, as is demonstrated using available experimental data. Conversely, n-alkyl pendant groups attached to the side group reduce Tg. Our work establishes a coherent framework that unifies previously established trends, emphasizing the polarity and size effects of n-alkyl chains on Tg.