References:
1 Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589- 595, doi:10.1016/j.stem.2012.10.005 (2012).
2 Prigione, A. et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32, 364-376, doi:10.1002/stem.1552 (2014).
3 Das, U. N. Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 27, 21-25, doi:10.1016/j.nut.2010.04.003 (2011).
4 Wang, L. et al. Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J 36, 1330-1347, doi:10.15252/embj.201695417 (2017).
5 Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21, 805-821, doi:10.1016/j.cmet.2015.05.014 (2015).
6 De Oliveira, M. P. & Liesa, M. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival. Cells 9, doi:10.3390/cells9122600 (2020).
7 Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21, 392-402, doi:10.1016/j.cmet.2015.02.002 (2015).
8 Zhang, H. et al. Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Rep 16, 1536- 1547, doi:10.1016/j.celrep.2016.06.102 (2016).
9 Georgakoudi, I. & Quinn, K. P. Label-Free Optical Metabolic Imaging in Cells and Tissues. Annu Rev Biomed Eng 25, 413-443, doi:10.1146/annurev-bioeng-071516-044730 (2023).
10 Liu, Z. et al. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv 4, eaap9302, doi:10.1126/sciadv.aap9302 (2018).