2024 AIChE Annual Meeting
(18i) Hybrid Active Learning for Thermally-Responsive Solid-Solid Structural Transitions in Self-Assembled DNA-Functionalized Nanoparticle Crystals
Authors
References
(1) Young, K. L.; Ross, M. B.; Blaber, M. G.; Rycenga, M.; Jones, M. R.; Zhang, C.; Senesi, A. J.; Lee, B.; Schatz, G. C.; Mirkin, C. A. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials 2014, 26 (4), 653–659. https://doi.org/10.1002/adma.201302938.
(2) Lin, L.; Liu, Y.; Tang, L.; Li, J. Electrochemical DNA Sensor by the Assembly of Graphene and DNA-Conjugated Gold Nanoparticles with Silver Enhancement Strategy. Analyst 2011, 136 (22), 4732–4737. https://doi.org/10.1039/C1AN15610A.
(3) Heddle, J. G. Gold Nanoparticle-Biological Molecule Interactions and Catalysis. Catalysts 2013, 3 (3), 683–708. https://doi.org/10.3390/catal3030683.
(4) Mirkin, C. A. The Polyvalent Gold Nanoparticle Conjugate—Materials Synthesis, Biodiagnostics, and Intracellular Gene Regulation. MRS Bulletin 2010, 35 (7), 532–539. https://doi.org/10.1557/mrs2010.602.
(5) Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O. Switching Binary States of Nanoparticle Superlattices and Dimer Clusters by DNA Strands. Nature Nanotech 2010, 5 (2), 116–120. https://doi.org/10.1038/nnano.2009.378.
(6) Mao, R.; Pretti, E.; Mittal, J. Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices. ACS Nano 2021, 15 (5), 8466–8473. https://doi.org/10.1021/acsnano.0c10874.