Skip to main content
Toggle main menu visibility
Menu
Join
Sign In
Communities
Membership
Events
Publications
Learning & Careers
AIChE Home
About
Contact AIChE
Leadership
Events
Communities
Membership
Learning & Careers
Publications
Careers at AIChE
Equity, Diversity, Inclusion
Giving
Students
Young Professionals
Operating councils
Local Sections
Committees
Awards
Communities
Membership
Events
Publications
Learning & Careers
Toggle site search visibility
Sign In
Join
Breadcrumb
Home
Publications
Proceedings
2023 AIChE Annual Meeting
Computing and Systems Technology Division
Interactive Session: Systems and Process Control
2023 AIChE Annual Meeting
Session: Interactive Session: Systems and Process Control
Presentations
03:30 PM
(149l) Harnessing Feedback Control Strategy for Improved Core Annular Flow Stability in Heavy Oil Transportation
Nogueira, I.
,
Lima, P.
,
Schnitman, L.
,
Paiva Guimarães Mendes, T.
,
Costa, E.
,
Skogestad, S.
(149ae) Bayesian Identification of Nonlinear, Sparse, Dynamic Models
Adeyemo, S.
,
Bhattacharyya, D.
(149ac) Optimization-Based State and Parameter Estimation for Distributed Parameter Pipeline Systems
Xie, J.
,
Dubljevic, S.
,
Zhang, L.
(149w) Parameter Estimation in Bioprocesses Using Bayesian Inference
Mathias, N.
,
Mhaskar, P.
,
Corbett, B.
,
Weir, L.
(149f) Dynamic Analysis and Model Predictive Control of a Biochemical Reactor Under Delayed Uncertain Measurement and Multi-Rate Actuation/Sampling
Ozorio Cassol, G. Sr.
,
Dubljevic, S.
(149g) Multiscale Kinetic Modeling and Optimization: In-Depth Analysis of Cellulose Degradation for Enhanced Pulping Process and Superior Paper Quality
Kim, J.
,
Pahari, S.
,
Ji, A.
,
Zhang, M.
,
Yoo, C. G.
,
Kwon, J.
(149x) Hybrid Series/Parallel All-Nonlinear Dynamic-Static Stochastic Neural Networks: Development, Training and Application to Chemical Processes
Mukherjee, A.
,
Bhattacharyya, D.
(149j) Practical Control Laws with Quantum Computation
Abou Halloun, J.
,
Kasturi Rangan, K.
,
Durand, H.
(149ab) Considerations of Closed-Loop Control on Quantum Computers Using a Modified Grover’s Algorithm for Simulation of a Chemical Process
Nieman, K.
,
Durand, H.
(149y) Physics-Informed Neural Networks (PINNs) for Process Systems with Model Plant Mismatch
Mhaskar, P.
,
Rasmussen, S.
,
Moayedi, F.
,
Sarna, S.
,
Corbett, B.
(149d) Model Predictive Control of an Axial Dispersion Tubular Reactor with Recycle: A Distributed Parameter System with State Delay
Moadeli, B.
,
Dubljevic, S.
,
Ozorio Cassol, G. Sr.
(149ad) A Constraint-Based Modeling Framework with Deep Reinforcement Learning and Multi-Objective Optimization for Control of Mammalian Cell Cultures
Almutar, E.
,
Parulekar, S.
(149k) Considerations of Space Manufacturing: Utilizing Earth-Based Resources for Modeling and Control Applications While Considering Communication Delay
Nieman, K.
,
Durand, H.
(149a) Case Studies on the Combined Identification and Offset-Free Control of Chemical Processes (Poster corresponding to plenary presentation)
Kuntz, S.
,
Downs, J. J.
,
Miller, S. M.
,
Rawlings, J.
(149h) The Theoretical Basis of Ratio Control
Skogestad, S.
(149i) Self-Optimizing Control for Secondary Controlled Variable Selection
Zhou, C.
,
Su, H.
,
Zhu, X.
,
Pan, F.
,
Cao, Y.
,
Yang, S.
,
Shen, K.
,
Hu, M.
,
Jiao, K.
,
Tang, X.
(149b) Fast Zone-Model Predictive Control for Full Battery Pack of Electric Vehicles
Kim, Y.
,
Hong, C.
,
Oh, S. K.
,
Hong, D.
,
Cho, H.
,
Shin, S.
(149c) A Machine Learning Assisted Approach to Model Predictive Control with Multi-Objective Optimization and Multi-Criteria Decision Making
Wang, Z.
,
Tan Gian Yion, W.
,
Rangaiah, G. P.
,
Wu, Z.
(149u) Advanced Model Predictive Control Strategies for Large-Scale Dynamic Systems Based on Data-Driven Artificial Neural Networks
Xie, W.
(149aa) Synthesis of Decarbonized Hydrogen Production Processes Using the Attainable Region Framework
Masuku, C.
(149e) Distributed Control of Integrated Process Systems – an Experimental Study
Sukhadeve, P.
,
Jogwar, S.
(149n) Machine Learning-Based Predictive Irrigation Scheduling
Agyeman, B.
,
Liu, J.
(149o) Data Driven Economic Model Predictive Control of a Rotational Molding Process
Chandrasekar, A.
,
Garg, A.
,
Abdulhussain, H.
,
Gritsichine, V.
,
Thompson, M. R.
,
Mhaskar, P.
(149p) Hybrid Subspace-Rnn Based Approach for Modelling of Non-Linear Processes
Chandrasekar, A.
,
Mhaskar, P.
(149s) Parameter Estimation for Bioprocesses Cognizant of Measurement Noise Distribution
Weir, L.
,
Mathias, N.
,
Mhaskar, P.
,
Corbett, B.
(149z) Reinforcement Learning Based Control of Fed-Batch Production Reactor
Monteiro, M.
,
Kontoravdi, C.
,
Fadda, S.
(149q) Model-Based Control for Liquid-Liquid Extraction
Moser, D.
,
Boehm, J.
,
Neugebauer, P.
,
Sacher, S.
,
Horn, M.
,
Rehrl, J.
,
Steinberger, M.
(149v) Physics-Informed Neural Networks (PINNs) for Modeling Dynamic Processes Based on Limited Physical Knowledge and Data
Velioglu, M.
,
Dahmen, M.
,
Mitsos, A.