2022 Annual Meeting
(575e) Hybrid Modeling Using Universal Differential Equations for Lab-Scale Batch Production of ?-Carotene Using Saccharomyces Cerevisiae
Authors
Recently, a new class of neural networks called Neural ODEs has been developed wherein instead of specifying a discrete sequence of hidden layers in the neural network structure, the progression of the input through the hidden layers becomes continuous and is represented using an ODE [4]. Solving this ODE using a black-box ODE solver gives the output of the Neural ODEs. These continuous-depth Neural ODE networks have a constant memory cost, are able to adapt their evaluation strategy to each input, and explicitly trade computational speed for accuracy. These Neural ODEs can be combined with a first-principles-based model to build a hybrid model called Universal Differential Equations (UDEs) [5]. In this work, we built a UDE-based hybrid model for batch production of β-carotene using Saccharomyces cerevisiae strain mutant SM14. This model was developed using multiple software packages in Julia programming language and trained using data obtained from experiments wherein the initial glucose concentration was 20 g/L. Subsequently, the trained UDE model was tested using another experimental dataset wherein the initial glucose concentration was 22.36 g/L. The UDE-based hybrid model shows accuracy superior to the existing first-principles model specifically in the case of biomass, acetic acid and β-carotene concentrations. This work illustrates that UDE-based hybrid models can be utilized to quantify the unknowns in the first-principles model thereby improving its overall accuracy.
Literature cited:
[1] Ordonez, M.C., Raftery, J.P., Jaladi, T., Chen, X., Kao, K., Karim, M.N. Modeling of batch kinetics of aerobic carotenoid production using Saccharomyces cerevisiae. Biochem. Eng. J., 114:226-236, 2016.
[2] Bangi, M.S.F., Kwon, J.S.I. Deep hybrid modeling of chemical process: application to hydraulic fracturing. Comput. Chem. Eng., 134:106696, 2020.
[3] Shah, P., Sheriff, M.Z., Bangi, M.S.F., Kravaris, C., Kwon, J.S.I., Botre, C., Hirota, J. Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters. Chemical Engineering Journal, 135643, 2022.
[4] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K. Neural ordinary differential equations. Advances in Neural Information Processing Systems 31, 6571-6583, 2018.
[5] Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A. Universal Differential Equations for Scientific Machine Learning. arXiv:2001.04385, 2020.