[1] A. Bemporad and M. Morari, âRobust model predictive control: A survey,â in Robustness in Identification and Control. Springer, 1999, pp. 207â226.
[2] D. Q. Mayne, âModel predictive control: Recent developments and future promise,â Automatica, vol. 50, no. 12, pp. 2967â2986, 2014.
[3] A. Mesbah, âStochastic model predictive control: An overview and perspectives for future research,â IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30â44, 2016.
[4] S. Lucia, D. Navarro, O. Lucia, P. Zometa, and R. Findeisen, âOptimized FPGA implementation of model predictive control for embedded systems using high-level synthesis tool,â IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 137â145, 2017.
[5] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari, âApproximating explicit model predictive control using constrained neural networks,â in American Control Conference, Milwaukee, 2018, pp. 1520â1527.
[6] B. Karg and S. Lucia, âEfficient representation and approximation of model predictive control laws via deep learning,â arXiv preprint arXiv:1806.10644, 2018.
[7] A. D. Bonzanini, J. A. Paulson, D. B. Graves, and A. Mesbah, âToward safe dose delivery in plasma medicine using projected neural network-based fast approximate NMPC,â IFAC-PapersOnLine, vol. 53, no. 2, pp. 5279â5285, 2020.
[8] J. A. Paulson and A. Mesbah, âApproximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction,â IEEE Control Systems Letters, vol. 4, pp. 719â724, 2020.
[9] M. H. Ghasemi, O.Lucia, and S.Lucia, âComputing in the blink of an eye: Current possibilities for edge computing and hardware-agnostic programming,â IEEE Access, 2020.
[10] N. Khan, D. E. Goldberg, and M. Pelikan, âMulti-objective Bayesian optimization algorithm,â in Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation. Citeseer, 2002, pp. 684â684.
[11] S. Daulton, M. Balandat, and E. Bakshy,âDifferentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization,â Advances in Neural Information Processing Systems, vol. 33, pp. 9851â9864, 2020.
[12] A. D. Bonzanini, J. A. Paulson, G. Makrygiorgos, and A. Mesbah, âFast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks,â Computers & Chemical Engineering, vol. 145, p. 107174, 2021.
[13] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. DeFreitas, âTaking the human out of the loop: A review of Bayesian optimization,â Proceedings of the IEEE, vol. 104, pp. 148â175, 2015.
[14] J. Snoek, H. Larochelle, and R. P. Adams, âPractical Bayesian optimization of machine learning algorithms,â in Advances in Neural Information Processing Systems, 2012, pp. 2951â2959.
[15] F. Sorourifar, G. Makrygirgos, A. Mesbah, and J. A. Paulson, âA data-driven automatic tuning method for MPC under uncertainty using constrained Bayesian optimization,â IFAC-PapersOnLine, vol. 54, no. 3, pp. 243â250, 2021.