Breadcrumb
- Home
- Publications
- Proceedings
- 2022 Annual Meeting
- Process Development Division
- Physical Properties for Chemical Product and Process Design
- (140e) Data-Driven Modeling to Predict the Physical Properties of the Lubricant
Literature cited:
[1] Martini A, Ramasamy US, Len M. Review of Viscosity Modifier Lubricant Additives. Tribol Lett. 2018;66(2):1-14. doi:10.1007/s11249-018-1007-0
[2] MarinoviÄ S, JukiÄ A, Doležal D, Å pechar B, KritoviÄ M. Prediction of used lubricating oils properties by infrared spectroscopy using multivariate analysis. Goriva I Maz. 2012;51(3):205-215. http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=132656
[3] Joo C, Park H, Kim J. Development of physical property prediction models for polypropylene composites with optimizing random forest hyperparameters. 2021;(January). doi:10.1002/int.22700
[4] Liu W, Li M, Zhang M, et al. Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance. Ecosyst Heal Sustain. 2020;6(1). doi:10.1080/20964129.2020.1726211
[5] Bentéjac C, CsörgÅ A, MartÃnez-Muñoz G. A Comparative Analysis of Gradient Boosting Algorithms. Vol 54. Springer Netherlands; 2021. doi:10.1007/s10462-020-09896-5
[6] Zhang Y, Zhao Z, Zheng J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. J Hydrol. 2020;588:125087. doi:10.1016/J.JHYDROL.2020.125087