[1] A. A. Fridman and G. G. Friedman, Plasma medicine. John Wiley & Sons Chichester, UK:, 2013.
[2] V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, and J. Julak,âNonthermal plasmaâa tool for decontamination and disinfection,â BiotechnologyAdvances, vol. 33, no. 6, pp. 1108â1119, 2015.
[3] A. Sakudo, Y. Yagyu, and T. Onodera, âDisinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications,â International Journal of Molecular Sciences, vol. 20, no. 20, p. 5216, 2019.
[4] B. Haertel, T. Von Woedtke, K.-D. Weltmann, and U. Lindequist, âNon-thermal atmospheric-pressure plasma possible application in wound healing,â Biomolecules & Therapeutics, vol. 22, no. 6, p. 477, 2014.
[5] M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink, âCold plasma selectivity and the possibility of a paradigm shift in cancer therapy,â British Journal of Cancer, vol. 105, no. 9, pp. 1295â1301, 2011.
[6] D. Gidon, D. B. Graves, and A. Mesbah, âEffective dose delivery in atmospheric pressure plasma jets for plasma medicine: A model predictive control approach,â Plasma Sources Science and Technology, vol. 26, no. 8, p. 085005, 2017.
[7] D. Gidon, H. S. Abbas, A. D. Bonzanini, D. B. Graves, J. M. Velni, and A. Mesbah, âData-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing,â Control Engineering Practice, vol. 109, p. 104725, 2021.
[8] A. N. Bhoj and M. J. Kushner, âMulti-scale simulation of functionalization of rough polymer surfaces using atmospheric pressure plasmas,â Journal of Physics D: Applied Physics, vol. 39, no. 8, p. 1594, 2006.
[9] D. Breden and L. L. Raja, âComputational study of the interaction of cold atmospheric helium plasma jets with surfaces,â Plasma Sources Science and Technology, vol. 23, no. 6, p. 065020, 2014.
[10] A. Sobester, A. Forrester, and A. Keane, Engineering design via surrogate modelling: A practical guide. John Wiley & Sons, 2008.
[11] A. Bemporad and M. Morari, âRobust model predictive control: A survey,â in Robustness in identification and control. Springer, 1999, pp. 207â226.
[12] A. Mesbah, âStochastic model predictive control: An overview and perspectives for future research,â IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30â44, 2016.
[13] A. D. Bonzanini, J. A. Paulson, D. B. Graves, and A. Mesbah, âToward safe dose delivery in plasma medicine using projected neural network-based fast approximate NMPC,â IFAC-PapersOnLine, vol. 53, no. 2, pp. 5279â5285, 2020.
[14] A. D. Bonzanini, J. A. Paulson, G. Makrygiorgos, and A. Mesbah, âFast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks,â Computers & Chemical Engineering, vol. 145, p. 107174, 2021.
[15] M. Gevers, âIdentification for control: From the early achievements to the revival of experiment design,â European Journal of Control, vol. 11, no. 4-5, pp. 335â352, 2005.
[16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. DeFreitas, âTaking the human out of the loop: A review of Bayesian optimization,â Proceedings of the IEEE, vol. 104, pp. 148â175, 2015.
[17] L. Minati, C. Migliaresi, L. Lunelli, G. Viero, M. Dalla Serra, and G. Speranza, âPlasma assisted surface treatments of biomaterials,â Biophysical Chemistry, vol. 229, pp. 151â164, 2017.
[18] E. Stoffels, A. Flikweert, W. Stoffels, and G. Kroesen, âPlasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio) materials,â Plasma Sources Science and Technology, vol. 11, no. 4, p. 383, 2002.
[19] Y. Bao, J. M. Velni, A. Basina, and M. Shahbakhti, âIdentification of state-space linear parameter-varying models using artificial neural networks,â IFAC-PapersOnLine, vol. 53, no. 2, pp. 5286â5291, 2020.