Two of the most challenging problems at the intersection of electronic structure theory and molecular dynamics simulations are the accurate representation of intermolecular interactions and the development of reduced-scaling algorithms applicable to large systems. To some extent, these two problems are antithetical, since the accurate calculation of non-covalent interactions typically requires correlated, post-Hartree-Fock methods whose computational scaling with respect to system size precludes the application of these methods to large systems. I will describe recent advances in the development and application of our data-driven many-body models for molecular fluids which exhibit chemical accuracy from the gas to the condensed phase.