2021 Annual Meeting
(342ak) Predicting Uncertainty in Supervised Machine Learning Predictions of Chemical Kinetics
1. Ju, L. P., Han, K. L. & Zhang, J. Z. H. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions. Journal of Computational Chemistry vol. 30 305â316 (2009).
2. Sumathi, R. & Green, W. H. A priori rate constants for kinetic modeling. Theoretical Chemistry Accounts vol. 108 187â213 (2002).
3. Grambow, C. A., Pattanaik, L. & Green, W. H. Deep Learning of Activation Energies. J. Phys. Chem. Lett. 11, 2992â2997 (2020).
4. Nandi, A., M. Bowman, J. & Houston, P. A Machine Learning Approach for Rate Constants. II. Clustering, Training, and Predictions for the O(3P) + HCl â OH + Cl Reaction. J. Phys. Chem. A 124, 5746â5755 (2020).
5. Komp, E. & Valleau, S. Machine Learning Quantum Reaction Rate Constants. J. Phys. Chem. A 124, 8607â8613 (2020).
6. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).
7. Lee, M. & Seok, J. Estimation with Uncertainty via Conditional Generative Adversarial Networks. arXiv:2007.00334v1 (2020).