[3] G. R. Dowdy and P. I. Barton. Bounds on stochastic chemical kinetic systems at steady state. The Journal of Chemical Physics, 148(8):084106, 2018.
[4] G. R. Dowdy and P. I. Barton. Dynamic bounds on stochastic chemical kinetic systems using semidefinite programming.The Journal of Chemical Physics, 149(7):074103,2018.
[5] K. R. Ghusinga, C. A. Vargas-Garcia, A. Lamperski, and A. Singh. Exact lower and up-per bounds on stationary moments in stochastic biochemical systems.Physical Biology,14(4):04LT01, 2017.
[6] K. Helmes, S. Röhl, and R. H. Stockbridge. Computing Moments of the Exit Time Distribution for Markov Processes by Linear Programming.Operations Research, 49(4):516â530, 2001.
[7] J. Kuntz, M. Ottobre, G.-B. Stan, and M. Barahona. Bounding stationary averages of polynomial diffusions via semidefinite programming. SIAM Journal on Scientific Computing, 38(6):A3891âA3920, 2016.
[8] J. Kuntz, P. Thomas, G.-B. Stan, and M. Barahona. Bounding the stationary distributions of the chemical master equation via mathematical programming.The Journal of Chemical Physics, 151(3):034109, 2019.
[9] J.-B. Lasserre, T. Prieto-Rumeau, and M. Zervos. Pricing a class of exotic options via moments and SDP relaxations. Mathematical Finance, 16(3):469â494, 2006.
[10] Y. Sakurai and Y. Hori. A convex approach to steady state moment analysis for stochastic chemical reactions. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1206â1211. IEEE, 2017.
[11] E. Schwerer. A linear programming approach to the steady-state analysis of reflected Brownian motion. Stochastic Models, 17(3):341â368, 2001.