2020 Virtual AIChE Annual Meeting
(372f) Mechanistic Understanding of Electrochemical Processes in Alkaline Environments
Authors
Mechanistic understanding of electrocatalytic processes could greatly contribute to the design of improved electrocatalysts. At present, comprehensive mechanistic models capable of capturing the in situ nature of the catalytic active site in alkaline environment are still lacking for cases such as the oxygen reduction reaction (ORR) and the ammonia oxidation reaction (AOR).
In this contribution, we utilize electronic-structure calculations in the framework of coverage-cognizant DFT models to unravel complex reaction mechanisms for ORR and AOR in alkaline environment. We will focus on ORR on Au(100) and AOR on Pt(111), with two key questions in mind: i. âWhat is the origin of the remarkable activity of Au(100) for ORR in alkaline environment?â[2] and ii. âWhat is source of Pt deactivation in the AOR?â[3-6].
[1] Firouzjaie H. A., Mustain W. E., ACS Catal., 10, 225-234 (2020)
[2] Staszak-Jirkovský J, Subbaraman R., Strmcnik D., Harrison K., Diesendruck C. E., Assary R. Frank O., Kobr L., Wiberg G., Genorio B., Connell J.G., Lopes P.P., Stamenkovic, V.R., Curtiss L., Moore J., Zavadil K.R., Markovic N. M., ACS Catal., 5, 6600-6607 (2015)
[3] Rosca V., Koper M. T. M., Phys. Chem. Chem. Phys., 8, 2513â2524 (2006)
[4] Matsui T., Suzuki S., Katayama Y., Yamauchi K., Okanishi T., Muroyama H., Eguchi K., Langmuir, 31, 11717â11723 (2015)
[5] Vidal-Iglesia F. J., Solla-Gullón J., Pérez J. M., Aldaz A., Electrochem. Commun., 8, 102â106 (2006)
[6] Herron J. A., Ferrin P., Mavrikakis M., J. Phys. Chem. C, 119, 14692â14701 (2015)