2019 AIChE Annual Meeting

(564b) Towards Sustainable Industries: Industrial Symbiosis of an Oil Refinery and a Petrochemical Plant

Authors

Ketabchi, E. - Presenter, University of Surrey
Mechleri, E., University of Surrey
Arellano-Garcia, H., Brandenburgische Technische Universität Cottbus-Senftenberg
A common factor that can be seen in the history of all manufacturing and production sectors is that they all go through significant changes to keep them operating efficiently, thus a constant cycle of system development, obsolescence and advancement is formed. These sectors must be able to maintain the balance between the energy consumption and efficiency to keep the system optimised and preserve the opportunity to create value. Oil refineries are a prime example of one of these sectors that play an important role in our day-to-day lives. Due to an oil refineries’ major dependency on crude oil, the price fluctuation of which, has a profound impact on this industry. Thusly, this drives up prices and forcing a rise in the search for alternative solutions to tackle these efficacy and economic problems. Therefore, in this work, an integration approach has been considered based on the Industrial Symbiosis concept to connect an oil refinery with a petrochemical plant.

One main feature of the larger chemical industry that should be considered, is that they require careful management of material and energy to obtain valuable products. Of course, the processes key to the generation of the valuable products also produce fewer desirable chemicals, which have no value as waste products. Some of these waste materials can be used as feed-stock for other processes; turning probable costly chemical disposal into an economic boon. This “greener” approach opens avenues of improvement compatible with the idea of industrial symbiosis; where the waste from one process can be a feed-stock, useful for another. Taking this into account, a case study is presented involving the connection of an oil refinery with an ethylene production plant through material exchange and stream combination to benefit both plants.

As a result, we were able to improve not only product quality but the overall profit of both plants by a significant margin, while also decreasing dependency on outside sources for material supply.