2019 AIChE Annual Meeting
(557a) Arpa-E Refuel Program: Distributed Production of Ammonia and Its Conversion to Energy
Author
The REFUEL program funds projects in two categories: production of ammonia and other energy-dense zero-carbon liquid fuels using variable electricity and direct conversion of ammonia to electricity in fuel cells or cracking to hydrogen. Technologies for distributed ammonia production with low capital and operational costs include improving conventional Haber-Bosch process via reduction of operational pressure and temperature, plasma enhanced synthesis and direct electrochemical synthesis. In addition, advanced ammonia separation methods applicable to all these processes are being developed. The Haber-Bosch process improvement is definitely an achievable goal, due to the relatively advanced development stage of both water electrolysis and ammonia synthesis steps. To be competitive with conventional process, the direct electrochemical process should demonstrate efficiency >86% and reaction rate at least 7x10-7 mol cm-2 s-1, which is equivalent to current density > 300 mA cm-2 at 90% coulombic efficiency. This is extremely challenging goal to reach in 3 years.
The REFUEL program funds projects on direct ammonia fuel cells with different electrolytes: AEM, oxygen and proton solid oxides with different operation temperatures, and hydrogen delivery from ammonia using membrane and electrochemical separation technologies. Major focus in these projects is on development of novel catalysts and membranes with high flux and selectivity. In this presentation a review of related cohorted projects on ammonia technologies supported by REFUEL and from OPEN and IDEAS programs will be made. The most successful projects will be highlighted and compared with the-state-of-the-art, and current trends in ammonia energy will be analyzed.