Breadcrumb
- Home
- Publications
- Proceedings
- 2019 AIChE Annual Meeting
- Sustainable Engineering Forum
- Big Data and Analytics for Sustainability
- (51e) A Data-Driven Framework for Biomass Selection and Process Optimization of Activated Carbon Production
In this study, a predictive modeling framework was developed for AC production by integrating a data-driven approach Artificial Neural Network (ANN) with traditional chemical process simulation. Specifically, we focused on AC produced from woody biomass using pyrolysis and steam activation. ANN model was trained by a large dataset containing 168 data samples of biomass composition (i.e., ultimate and proximate analysis), operational conditions (i.e., pyrolysis time, pyrolysis temperature, activation time, activation temperature, steam to biochar ratio) and AC quality (i.e., yields and BET surface area).6 By providing the characterization data of target biomass and operational conditions, the well-trained ANN is capable of predicting the key process parameters such as yields of overall AC production.6 The composition of materials flows within the AC production was estimated by a pyrolysis kinetic model adapted from the previous studies.7 Aspen Plus process simulation was developed using the data generated by two models mentioned previously.8 The integrated modeling framework is able to generate information of primary energy consumption and GHG emissions of AC production using inputs of biomass characterization and operational conditions.
The modeling framework was tested for 251 data samples of woody biomass collected from literature to provide quantitative understandings of biomass species on primary energy and GHG emissions of AC production. Biogenic and fossil-based GHG emissions are tracked separately. Different scenarios regarding energy recovery were developed to identify potential opportunities of energy savings. The preliminary results indicated that AC from different biomass species have large variations in the primary energy consumption (43.4 â 276.7 MJ/kg AC product without energy recovery) and GHG emissions (3.7 â 20.6 CO2 eq./kg AC product without energy recovery). Impacts of specific biomass compositions (e.g., atomic H/C ratios) were further explored to understand the relationships between biomass characterization and energy/carbon footprints. By varying operational conditions, the integrated modeling framework can also provide insightful information of process optimization for specific biomass species.
Reference