2019 AIChE Annual Meeting
(208h) The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed By Linear Scaling Relations
References
1 Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810-815, doi:10.1038/nmat1223 (2004).
2 Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, doi:10.1063/1.4704546 (2012).
3 Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275-278, doi:10.1006/jcat.2002.3615 (2002).
4 Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, doi:10.1103/PhysRevLett.99.016105 (2007).
5 Olah, G. A., Goeppert, A. & Prakash, G. K. S. Chemical Recycling off Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 74, 487-498, doi:10.1021/jo801260f (2009).
6 Behrens, M. et al. The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science 336, 893-897, doi:10.1126/science.1219831 (2012).
7 Studt, F. et al. CO hydrogenation to methanol on Cu-Ni catalysts: Theory and experiment. J. Catal. 293, 51-60, doi:10.1016/j.jcat.2012.06.004 (2012).
8 Studt, F., Abild-Pedersen, F., Varley, J. B. & Nørskov, J. K. CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional. Catal. Lett. 143, 71-73, doi:10.1007/s10562-012-0947-5 (2013).
9 Studt, F. et al.Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320-324, doi:10.1038/nchem.1873 (2014).