2019 AIChE Annual Meeting
(203d) Minimum Ignition Energy (MIE) prediction from QSPR using machine learning
Authors
In this study, the MIE prediction of 60 flammable hydrocarbon compounds has been conducted using a Quantitative Structure-Property Relationship (QSPR) and machine learning techniques. The prediction models were developed using Random Forests (RF), Decision Trees (DT) and Artificial Neural Networks (ANN) resulting in promising (> 0.70) R2 values for the test sets. Decision trees were used to identify the 10 most important molecular descriptors influencing the MIE prediction model accuracy. In addition, a Genetic Function Approximation (GFA) algorithm in Materials Studio was used to develop a 10 parameter MIE prediction equation resulting in significant R2 value. The GFA, RF and DT algorithms resulted in a more robust MIE prediction model as compared to ANN algorithm.