2018 AIChE Annual Meeting
(724a) Low-CO2 Integrated Networks for Heat and Electricity Based on Hydrogen: A Comprehensive Spatio-Temporal MILP Model for Planning, Design and Operation of Future Value Chains
Author
A mixed integer programming model was developed that can optimise different scenarios for generation, storage and transportation of renewable hydrogen to satisfy heat demands. The model considers the spatial distribution of both the heat demands and the availability of primary resources in order to make a comparison between centralised and distributed generation, as well as to determine the location of hydrogen plants and storage facilities and the transmission and distribution networks required. The temporal representation simultaneously captures the short-term operational issues, such as intermittency of renewable sources, and long-term planning decisions up to 2050 to examine different pathways from the present time to various potential optimal solutions. The model optimises the design and operational decisions to determine the most cost effective/environmentally-friendly transition to the future heat network while also determining what that network should be.
References:
[1] S. Samsatli, N.J. Samsatli (2018). A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. Applied Energy. DOI: 10.1016/j.apenergy.2017.09.055.
[2] S. Samsatli, I. Staffell, N.J. Samsatli (2016). Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain. Int. J. of Hydrogen Energy, 41, 447-475.
[3] S. Samsatli, N.J. Samsatli (2015). A general spatio-temporal model of energy systems with a detailed account of transport and storage. Computers and Chemical Engineering, 80, 155-176.
[4] S.M. Jarvis, S. Samsatli (2018). Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis. Renewable & Sustainable Energy Reviews, 85, 46-68.