2018 AIChE Annual Meeting
(508c) The Quantum Mechanics Based Polarizable Force Field for Simulations of Complex Materials: Application to Water System
Authors
Recent dramatic developments in quantum mechanics (QM) methods has enabled accurate description of the interatomic interactions via dispersive forces (e.g. Grimme DFT-D). But the QM methods are limited to ~200 atoms and time scales of ~10 picoseconds which is impractical for real applications that require spatial scales of 100 nanometers and beyond (>100 million atoms) and time scales of microseconds and beyond. Therefore, to obtain a force field that could correctly describe the standard properties of a system and be transferable to new materials, we decided to base it fully on best available QM calculations.
Here, we provide an example of a new force field for water based solely on QM calculations with no empirical data. The QM was at high lever CCSD(T) level for all orientations and distances for water dimer plus X3LYP DFT on 19 larger water clusters. This model provides quite excellent agreement with experimental data for solid and liquid phase of water: Tmelt=273.3K (exp=273.15K) and properties at 298K: ÎHvap=10.36 kcal/mol, density = 0.997 g/cc, entropy= 68.4 eu, dielectric constant=76.1, ln Ds (self-diffusion coef) =-10.08 compared to experimental values of 10.52, 0.997, 69.9, 78.4, and -11.24, respectively. We expect this force field to remain accurate as a function of temperature and pressure. We have used this force field to study the properties of water at the surface including surface thickness, water orientation, hydrogen bond distribution, and vibrational frequencies which are experimentally hard to obtain. In addition, we have discovered for the first time the existence of six-coordinated water molecules at the areas close to the surface which are stable over 10 ps time intervals. They could be responsible for some of the complicated water properties of water at the surface.
Being based solely on QM we expect that we can use QM to extend it to ions, proteins, DNA, polymers, and inorganic systems for applications to biomolecular, pharma, electrocatalysis (fuel cells, water splitting) and batteries where interactions with explicit water molecules plays a significant role.