2017 Annual Meeting
(522d) Heuristic for Improved Mccormick Relaxations in a Branch-and-Bound Framework
References
[1] Bompadre, A. and A. Mitsos (2012). Convergence rate of McCormick relaxations. Journal of Global Optimization 52(1), 1 - 28.
[2] Duran, M. A. and I. E. Grossmann (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming 36(3), 307 - 339.
[3] McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs:
Part I-Convex underestimating problems. Mathematical Programming, 10(1):147-175.
[4] McDonald, C. and C. Floudas (1995). Global optimization for the phase and chemical equilibrium problem: Application to the NRTL equation. Computers & Chemical Engineering 19(11), 1111 - 1139.
[5] Mitsos, A., B. Chachuat, and P. I. Barton (2009). McCormick-based relaxations of algorithms. SIAM Journal on Optimization 20(2), 573 - 601.
[6] Ryoo, H. S. and N. V. Sahinidis (1995). Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers & Chemical Engineering 19(5), 551 - 566.
[7] Sahinidis, N.V., I.E. Grossmann, R.E. Fornari and M. Chathrathi (1989). Optimization model for long range planning in the chemical industry. Computers & Chemical Engineering 13(9), 1049 â 1063.
[8] Singer, A.B., J. W. Taylor, P. I. Barton, and W. H. Green (2006). Global dynamic optimization for parameter estimation in chemical kinetics, J. Phys. Chem. A, 110, pp. 971â976.
[9] Tsoukalas, A. and A. Mitsos (2014). Multivariate McCormick relaxations. Journal of Global Optimization, 59:633-662.