2017 Annual Meeting
(161c) Novel Experimental Method for the Determination of the Minimum Agitation Speed for Solids Suspension in Flat-Bottomed Stirred Tank Reactors
In this study, Njs was experimentally determined by using a newly developed method in which the area covered by the unsuspended solids still at the bottom of the tank was measured at increasing agitation speeds, starting at low speeds (below Njs). To do so, images of the tank bottom were captured in .jpg format by a digital camera. Each image was processed with the appropriate software (Image J) to quantitatively determine the area still covered by solids at that speed. Increasing the agitation speed increased the amount of solids being suspended, resulting in a decrease in the area covered by solids at the bottom of the tank. Plots of the area covered by the solids vs. the corresponding agitation speed resulted in a linear function, which when extrapolated to A®0 yielded the expected value of Njs (named NjsâA). The values so obtained for NjsâA were then compared to the Njs value determined visually (Njsâvis).
This approach was tested for a number of mixing systems with different impeller types (disk turbines, flat-blade turbine, pitched-baled turbines, hydrofoil impeller), impeller off-bottom clearances, impeller sizes, and tanks sizes. Preliminary tests were conducted using the same method but in hemispherical tanks, where the solids at the bottom of the tank a formed an approximate circular pattern. As compared to hemispherical bottomed tank, the solid particles in flat-bottomed tanks were dispersed all over the bottom of the tank. Therefore, the sum of all the individual areas covered by the solid particles deposited at the bottom was quantitatively determined. The results for Njs-A obtained with the new method were compared with those obtained using the traditional Zwieteringâs approach. In general, excellent agreement was found between NjsâA and Njsâvis. It can be concluded that this newly developed method constitutes a novel, reliable, and, especially, observer-independent method to experimentally determine Njs.
It is expected that this approach could be of particular relevance in a variety of mixing applications, including the suspension of micro-carrier particles, such as glass beads, on to which animal cells can become attached and used to produce various bio-products, and in the suspension of beads for production of proteins.