2016 AIChE Annual Meeting
(145d) Nanoparticle Catalysts Supported on Substitutionally Doped Graphene: Effects on Activity and Stability for Hydrogen Oxidation
Authors
Herein, using graphene as a two-dimensional analog for the CNT support used experimentally, we study from first-principles the impact of graphene and doped graphene supports on the hydrogen oxidation reaction occurring on nanometer-sized catalysts. We consider nickel, copper, and silver nanoparticle compositions, and nitrogen-doped, boron-doped, and phosphorous-doped graphene supports. To understand quantitatively the effect of substitutional doping on the nanoparticle/support interaction, we study: 1) the charge transfer between the nanoparticle and support as a function of dopant and dopant location, 2) the modulation of the nanoparticle's d band center due to the presence of a dopant, 3) the interaction of metal adatoms with graphene and doped-graphene, 4) the hydrogen oxidation activity of the nanoparticle/support systems, and 5) the oxidative stability of the supported copper and nickel nanoparticles.