Breadcrumb
- Home
- Publications
- Proceedings
- 2015 AIChE Annual Meeting Proceedings
- Catalysis and Reaction Engineering Division
- Future Automotive Catalysis: SCR
- (351b) The Molecular Nature of the Cu Active Sites Under NOx Selective Catalytic Reduction
The Molecular Nature of the Cu Active Sites Under NOx
Selective Catalytic Reduction
The selective catalytic reduction
(SCR) of NOx in excess oxygen is a key challenge
in meeting increasingly stringent emission regulations. The metal-exchanged
zeolite Cu-SSZ-13 in particular exhibits sufficient activity and hydrothermal
stability for practical applications.
A primary obstacle for further
improvement of SCR catalysts is a lack of molecular-level understanding of the
active sites and mechanism. Previous
work [1] identified isolated Cu ions in the six-membered ring of Cu-SSZ-13 as an
active site for the standard NH3-SCR reaction:
4 NH3 + 4
NO + O2
→4 N2 + 6 H2O
Here, using density functional
theory (DFT) calculations, ab-initio
molecular dynamics (AIMD), and ab-initio thermodynamic
modeling we:
Identify two forms of single Cu species, [Cu]2+ and [CuOH]+ as the precursors to the active Cu sites under SCR. We show there is a strong thermodynamic driving force to preferentially form [Cu]2+ over [CuOH]+ and predict the resulting Cu speciation between the two as a function of the zeolite's Silicon to Aluminum (Si:Al) and Copper to Aluminum (Cu:Al) composition. We show that SCR occurs through a
redox mechanism at all isolated Cu sites regardless of their speciation, and
identify key reaction steps in the reduction and oxidation half cycles [2]. We then extend these ideas to other zeolite
supports.
References
1.
Bates, S.A.,
Verma, A.A., Paolucci, C., Parekh, A.A., Anggara, T.,
Yezerets, A., Schneider, W.F., Miller, J.T., Delgass, W.N., and Ribeiro, F.H.,
J. Catal. 312,
87 (2014)
2.
Paolucci, C.,
Verma, A.A., Bates, S.A., Kispersky, V.F., Miller,
J.T., Gounder, R., Delgass,
W.N., Ribeiro, F.H., and Schneider, W.F., Angew. Chem. Int. Ed. 53, 44 (2014)