2014 AIChE Annual Meeting
A Machine-Learning Model to Predict Activation Energies of Hydrogenation Reactions
Author
McCullough, J. - Presenter, Northeastern University
The goal of this research is to develop a machine-learning model to predict activation energies associated to the hydrogenation of organic compounds in the presence of specific catalytic substrates. The current method of predicting activation energies involves a linear relationship with the change in Gibbs free energy of the reaction, which can be very inaccurate. Other methods include experimentation and simulation, both of which have significant cost and/or time drawbacks. This research seeks to improve on these methods to develop a means to predict activation energies quickly, accurately, and with minimal cost.