Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Environmental Division
- Applying Chemical Engineering Towards a Green Economy
- (9a) A Marco-Level Impact Assessment Tool for Emerging Technologies in Chemical Industry
In this study, a macro-level modeling framework is developed to serve as a useful tool for policy maker to understand the net energy, emissions and economic impacts of emerging technologies on entire U.S. economy from a life cycle perspective. The results can provide insightful indications on critical factors driving the energy, emissions and resources utilization of chemical production, and offer the answers to which technologies can lead to significant reductions in the national impacts of chemical industry. The modeling framework is generic and flexible enough to be used as a macro-level decision support tool applied across feedstocks, products and technologies and make robust projections and reasonable comparisons over temporal and spatial scales, which is useful for long-term planning of national energy consumption reduction and GHG emissions mitigation.
A preliminary result for the case of ethylene is presented here for demonstration. The results showed that by 2040 a novel catalyst-assisted technology has the potential to reduce 50 million GJ of life-cycle energy consumption of U.S. ethylene industry and avoid 3 million tons of CO2-equiv GHG emissions. For other emerging technologies applied to ethylene production, the model assesses their net impacts under different economic and resources projections by scenario analysis. Since this model allows for the assessment of economy-wide potential reductions of emerging technologies for a variety of chemical productions, more case studies of different chemicals manufactured by multiple technologies will be presented in oral presentation.
References
[1] ICCA, "Innovations for Greenhouse Gas Reductions " International Council of Chemical Associations 2009.
[2] E. Worrell, D. Phylipsen, D. Einstein, and N. Martin, "Energy Use and Energy Intensity of the U.S. Chemical Industry " Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California2000.
[3] EIA, "Annual Energy Outlook 2013 " U.S. Energy Information Administration Washington, DC 2013.
[4] EIA. (01/02). The National Energy Modeling System: An Overview Available: http://www.eia.gov/oiaf/aeo/overview/
[5] ETSAP. (12/11). MARKAL. Available: tp://www.iea-etsap.org/web/Markal.asp
[6] M. D. Tabone, J. J. Cregg, E. J. Beckman, and A. E. Landis, "Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers," Environmental Science & Technology, vol. 44, pp. 8264-8269, 2010/11/01 2010.