Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Food, Pharmaceutical & Bioengineering Division
- Micro-Scale Technologies
- (728f) Bacterial Patterning at the Micron Scale for Quantitative Interactions
We have developed a microfluidic platform and patterning technique that allows the controlled deposition of multiple bacterial species. Interactions between species can then be observed in a defined laboratory environment. The general process consists of depositing a thin, peel-able film of parylene on silicon, etching a defined pattern in the parylene, overlaying with a microfluidic delivery device, and peeling the parylene to leave desired patterns of bacteria. With this approach we can generate micron-scale patterns of multiple species of bacteria. At high culture densities (OD600>0.1) we consistently create colonies with diameters as small as 10µm. At lower culture densities, stochastic processes influence colony formation. Spots with different bacterial species can be spaced as closely as 100µm. Cells are viable throughout the delivery process and we observe growth when the patterns are overlaid with liquid or solid media. Real-time monitoring of bacterial cells and colonies allows quantitative analysis of how interspecies interactions influences processes such as cell growth.