Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Nanomaterials for Energy Applications
- Nanomaterials for Energy Storage II
- (70j) Ionic Liquids: Platforms for Thermally-Responsive Polymer Electrolytes
“Smart materials” or stimuli-responsive materials are those with properties responding in a desired manner to an external stimulus or environmental change. While several classes of responsive materials exist, soft materials, particularly synthetic polymers, represent an opportunity to design systems with unique functionality to achieve a wide variety of chemical and physical properties. Here we present a system utilizing thermally-responsive polymers capable of reducing lithium conductivity or lithium charge transfer ability in non-aqueous electrolytes with increasing temperature. These proposed systems would create self-limiting lithium reactions within a battery should the temperature increase beyond a target, thus inhibiting thermal runaway.
Li-ion systems utilizing polymer gel electrolytes are commercially available and ionic liquids (ILs) have gained attention as potential replacements for traditional electrolytes (low volatility, non-flammability, high conductivity, and a wide potential window). Poly(ethylene oxide) (PEO) gels have long been combined with lithium salts to create polymeric electrolytes, which while safe, possess diminished conductivity. These PEO systems have recently been combined with ILs to boost performance while retaining the safety and mechanical stability of conventional polymer gel electrolytes. In our proposed system, we combine current research efforts utilizing polymer gel electrolytes and ILs, both of which provide improved thermal stability, while making use of the recently discovered lower critical solution temperature (LCST) between PEO and certain ILs, to modulate electrolyte conductivity with temperature [1,2]. We design the polymer electrolyte to decrease conductivity during a phase transition at elevated temperatures. As the temperature cools, the initial conductivity is reversibly restored as the electrolyte returns to its initial state. Additionally, we show how the PEO/IL composition and the addition of lithium salts affect both the magnitude of change in conductivity and the LCST in these thermally-responsive polymer electrolyte systems.
We then demonstrate how these thermally-responsive polymer electrolytes can be used to control electrochemical properties in both model supercapacitor systems, consisting of activated and mesoporous carbon supercapacitors, and lithium ion battery systems, consisting of graphitic anodes and lithium cobalt oxide (LiCoO2) cathodes. Through the thermal phase transition above the normal operation temperatures of these electrochemical devices, we demonstrate how PEO/IL systems can be utilized to reduce the conductivity in electrolyte systems and reduce both the double layer charging ability in supercapacitor and redox charge transfer ability in lithium ion batteries (through a decrease in power and energy density).
The experiments performed to date show tremendous promise for controlling battery and supercapacitor operation using temperature. Further development of responsive electrolytes will lead to numerous opportunities associated with thermal safety and “smart” electrochemical systems that will ultimately lead to large-format battery applications will built-in thermal control that is both reversible and non-destructive.