Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Catalysis and Reaction Engineering Division
- Rational Catalyst Design II
- (700c) Effects of d-Band Shape on the Surface Reactivity of Transition-Metal Alloys
In this talk, I will start with a brief introduction to some conceptual aspects of the theory of surface chemisorption, followed by the discussion of alloy systems where the d-band center failed to describe the trend of surface reactivity. In particular, I will emphasize the effects of the shape of the d-band of a metal site, represented by higher moments of the d-band, on energetics of surface chemical bonding. The upper d-band edge, defined as the highest peak position of the Hilbert transform of the density of states projected onto d-orbitals of an active metal site, is identified as an electronic descriptor for the surface reactivity of transition metals and their alloys, regardless of variations in the d-band shape. The utilization of the upper d-band edge with scaling relations enables a considerable reduction of the parameter space in search of improved alloy catalysts and further extends our understanding of the relationship between the electronic structure and chemical reactivity of metal surfaces.