Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Computing and Systems Technology Division
- Interactive Session: Systems and Process Operations
- (570z) Distillation Curve Optimization Using Monotonic Interpolation
Our proposed new technique is to integrate both the optimization of blending several streams’ distillation curves together with also shifting or adjusting the cutpoints of one or more of the stream’s initial and/or final boiling-points (IBP and FBP) in order to manipulate its TBP curve in an either off- or on-line environment. This shifting or adjusting of the TBP curve’s IBP and FBP (front and back-end respectively) ultimately requires that the upstream unit-operation has sufficient handles or controls to allow this type of cutpoint variation where the solution from this higher-level optimization would provide setpoints or targets to a lower-level advanced process control system which are now common place in oil-refineries. By shifting or adjusting the front- and back-ends of the TBP curve for one or more distillate blending streams, it allows for improved control and optimization of the final product demand quantity and quality, affording better maneuvering closer and around downstream bottlenecks such as tight property specifications and volatile demand flow and timing constrictions.
Specifically, we propose a novel technique using monotonic interpolation to blend and cut distillation temperatures and evaporations for petroleum fuels in an optimization environment is proposed. Blending distillation temperatures is well known in simulation whereby cumulative evaporations at specific temperatures are mixed together then these data points are used in piece-wise cubic spline interpolations to revert back to the distillation temperatures. Our method replaces the splines with monotonic splines to eliminate Runge's phenomenon and to allow the distillation curve itself to be adjusted by optimizing its initial and final boiling points known as cutpoints. By optimizing both the recipes of the blended material and its blending component distillation curves, very significant benefits can be achieved especially given the global push towards ultra low sulfur fuels (ULSF) due to the increase in natural gas plays reducing the demand for other oil distillates. Two examples are provided to highlight and demonstrate the technique.
(1) Riazi, M. R. Characterization and Properties of Petroleum Fractions. American Society for Testing and Materials, 2005.
(2) Menezes, B.C.; Kelly, J. D.; Grossmann, I. E. Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Process. Ind. Eng. Chem. Res. 2013, 52, 18324-18333.
(3) Kelly, J. D. Formulating Production Planning Models. Chem. Eng. Prog. 2004, 100, 43-50.
(4) Jia, Z.; Ierapetritou, M.; Kelly, J. D. Refinery Short Term Scheduling Using Continuous Time Formulation: Crude-Oil Operations. Ind. Chem. Eng. Res. 2004, 42, 3087-3097.