Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Food, Pharmaceutical & Bioengineering Division
- Protein Structure, Function, and Stability I
- (526a) Energy Flow As a Mechanism for Signal Propagation in Proteins
We have analyzed energy transfer in different structures of an intrinsically disordered (ID) protein, and show that the efficiency of energy propagation is not tied to the compactness of the structure or the number of tertiary contacts. This indicates that energy propagation through the protein backbone is a viable mechanism for signal propagation in intrinsically disordered proteins. In addition, we analyzed energy transfer in the catabolite activator protein (CAP), an allosteric protein that operates in the absence of conformational changes. We found that energy propagation is more efficient for the wild type (allosterically active), when compared to the allosterically inactive mutant D138V. These two examples demonstrate the feasibility of using energy flow through strongly interacting residues as a measure of efficiency of signal propagation in proteins.