Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Sustainable Engineering Forum
- Environmental Health & Safety and Sustainability
- (324a) Improving a process site sustainability through waste heat recovery
In this work, a definition of waste heat is presented and a methodology is developed to identify the potential for recovery of waste heat in a process site, considering the temperature, quality and quantity of sources of waste heat from site processes and the site utility system. To support the methodology, the concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling). The methodology takes into account energy flows in fired heaters and in the cogeneration, cooling and refrigeration systems. Mathematical models of waste heat recovery technologies, such as organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps, are provided and applied to assess the potential for recovery of waste heat.
To assess the potential for waste heat recovery, the concept of pinch analysis is extended; the waste heat source profile provides guidance on placement of waste heat recovery technologies in a process site. The methodology can be used to generate and evaluate alternative configurations of waste heat recovery technologies, propose improvements to existing technologies and determine the waste heat recovery temperatures for a site.
The evaluation of the different alternatives to generate work, chilled water and heat for space heating or hot water circulation was done using the energy performance of technologies, exergy degradation associated with the technologies and an enviro-economic criterion developed to measure the economic potential associated with reduced CO2 emissions resulting from waste heat recovery.
This methodology is illustrated using the case study of a petroleum refinery. In this case, from the available waste heat 14.3 MW electricity for export, 3.75 MW of chilling for site use, 2.7 MW heat to satisfy the domestic demand of 1500 people living outside the site and 31.3 MW of heat for preheating boiler feed water on-site can be generated. This resulted in 19% reduction in the site CO2 emissions and 40% reduction in the site operating costs i.e. an overall win-win situation for both the site and the neighbourhood of the site.
The methodology can be applied to the process industries and other facilities producing low-grade heat.
References