Breadcrumb
- Home
- Publications
- Proceedings
- 2014 AIChE Annual Meeting
- Separations Division
- Advances in Absorption
- (297d) Dynamic Simulation of CO2 Absorption in a Packing Tower
A dynamic model of the absorption process for dilute carbon dioxide mixtures in high alkaline solutions is proposed. Chemical reactions between CO2 and the high pH solution have been included in the model through the use of an enhancement factor for chemical absorption. Interfacial equilibrium constants have been calculated based upon Henry’s constant values for the different gas phase species calculated using fugacity ratios obtained by the Peng-Robinson equation of state. Mass and energy balances have been derived for all the species in vapor and liquid phases. Numerical techniques have been used to calculate the resulting species concentrations and temperature axial profiles in both phases. The dynamic behavior has been compared to steady-state solutions. The model has been validated using experimental data available in literature for different columns, packing materials, and operating conditions. Simulations under different operating variables and dynamic inputs have been conducted. These results show the potential of the proposed model to optimize operation and control of these separation processes.